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SECTION 1
INTRODUCTION

One of the most undesirable concomitants of simulating SGEMP in
a vacuum tank is that cavity oscillations are excited. Because the Q (Q
is defined as the number of periods necessary for the energy to decay to
e-l times its initial value) of these tanks is much larger than 1, the
cavity oscillations can interfere with the experiment for the entire dura-
tion of the data taking, after a time interval equal to the clear time of
the tank. To rid the experiment of these oscillations a number of dampers
have been suggested. In analyzing the effect of these dampers different
methods have been used. This report will concern itself with, hopefully,
elucidating the effect of one of these types of dampers using a modal-type

analysis.

A damper which is inexpensive and easy to construct (relative to

! has evaluated

other types of dampers) is the membrane damper. M. Messier
the effect of a one and two sheet, membrane damper using a reflection coef-
ficient analysis. Although this type of analysis does not directly utilize
the concept of energy absorption in the membrane the reflection coefficient
analysis has been shown, by M. A. Messier,? to be nearly equivalent to an
analysis which does use the concept of energy absorption. Nevertheless,

it is important to describe '"how'" the membrane damper actually damps

modal oscillations. In this report we first investigate how the damper
works by some heuristic arguments and then a more exact analysis is done.
These heuristic arguments will be made in Section 2. The more exact

analysis is made for a one or two sheet damper, and can be used to evaluate
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the transverse magnetic mode damping for a cylindrical tank. This latter
analysis is contained in Section 3 and is based upon modal arguments similar
to those of W. A. Seidler® and C. Baum.* 1In Section 3, our derivation of
the more exact equations for a damper analysis will assume that the damper
sheets are cylinders with no end caps. (The heuristic analysis suggests
that end caps might decrease the Q of the tank by a factor proportional to
the area of the end caps, for modes which have an electric field in the

radial direction.)

Part of the conclusions which can be drawn from the heuristic
analysis of Section 2 are based upon assuming that the modes of the tank are
not appreciably changed by the damper sheets. Although the relations
derived in Section 2 show how the variation of parameters effect damping,
they can't really be used to design a damper; the relations are too
inaccurate. In Section 3.2 we make a first order approximation, to the
exact equations derived in Section 3.1, to obtain an accurate approximation
of the relationship between modes, damper positions and sheet resistance.
The “first order approximation is based on assuming that the modes do not

appreciably change when damper sheets are introduced in the tank.

In Section 4 the results of Sections 2 and 3 are compared and
further conclusions are drawn. Graphs and tables are presented that should
be useful in designing sheet dampers. Finally in Section 5 we summarize

our results and conclusions.
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SECTION 2
HEURISTIC ANALYSIS OF MEMBRANE DAMPER

We shall try to show, in a somewhat heuristic way, what physics
goes into a sheet damper analysis; the sheet damper is contrasted with
damping due to cavity walls of finite conductivity. In our analysis, we
will demonstrate what parameters the Q of the cavity depends upon. We will
also get a ball park numerical answer for sheet resistance. We explicitly
consider only one damper sheet. If & is the energy in a cavity then the

rate of change of the energy is the Joule heat loss:

%%5':- ¥ . fav , (1)

where J is the current in the sheet and E is the electric field in the sheet.
If A is the area of the sheet, d its thickness, o its conductivity and E,,

the field parallel to the sheet then

g_t{ . - AdOE,z, 5 (2)

where we have assumed that the current in the sheet is related to B by
>
3 = oE ,

-5
and that E is roughly constant over the thickness d. This latter condition

¥ ¢ TRe
o 2 b e 2 (3)

where § is the skin depth for a mode which has the period T and a sheet

is satisfied if

oo

whose resistance is Re(sec/cm).
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To relate the parameters in Equation 2 to the Q of the cavity we

must relate Eg to the energy in the cavity. In general

&= 2VEL

(4)

where V is the volume of the cavity. Also, we may have

Combining Equations 4, 5 and 2 we find

dé& 1 (Ad b
aE - "2 (T/') oé

(5)

(6)

Defining the Q of the cavity as the number of periods, T, for the energy to

decay to el of its initial value, we find that
2 Vv
9= (Sl -
where

dé& 1

T

if the damper does not charge the period appreciably.

(7)

(8)

For a cyiindrical

cavity, of radius R the period T of the lst mode can be approximated by

Substituting (9) into (7) we find that the Q for the 1lst mode is approximated

by
1 R
Q= —~—-(——) cR.
2.4 R0 ¢
where we have made use of the relations

v = 1R%h

A = ZﬂRoh >

(9)

(10)

(11)
(12)

R



R = T (13)

In Equation 12 we have assumed that the area of the damper comes from a

cylindrical sheet of radius R, with no end caps. Equation 10 is the equa-

0
tion we are seeking.

We can obtain a ball park estimate of the sheet resistance Re from

Equation 10:

et ()
= 72 Q (;9) (ot (14)

i RO/R = .8 and Q = 1 then Re is 58 ohms. That is we should expect a sheet
resistance of the order of 100 ohms. Q equal to 1 is about the smallest
value Q can have without appreciably changing the period of the mode; RO/R

equal to 18 is a convenient position for the damper.

Equation 10 suggests that the Q can be made smaller by reducing
the resistance Re or increasing the sheet position radius RO' The actual

relationship between R Re and Q for a given mode, however, depends upon

,
how the fields actuallg vary with position in the cavity and is more
complex than Equation 10. (For example, in the present discussion we
assumed that the electric field parallel to the damper is constant in the
cavity, whereas, in fact, it vanishes at the walls of the cavity.) With an

accurate calculation Q is minimized with respect to R, and Re.

0
We can get an impression of how end caps on the conducting sheet
might affect the damping by investigating Equation 7. From Equation 7 we
see that the Q of a cavity is inversely proportional to the area. The ratio
of the area of a cylinder with end caps to one with no end caps is (1 + R/h).
For h equal to 6 meters and R equal to 2 meters this ratio would be 4/3. A

damper which was a complete cylinder might have a Q about 25 percent smaller




than a damper which has no end caps. This latter statement has meaning

only for modes which have electric fields in the radial direction; in general

the energy in the radial electric field should be about equal to the energy

associated with the electric field in the z direction.

From Equation 10, we can understand how sheet damping differs
from that of damping due to the walls of the tank alone. If R0 = S8R, in
Equation 10, then

Q= .33 R, . (15)

From Reference 5 the Q for the lowest mode of a cavity, Q, whose length

is three times its radius is

= S
g (16)

|| =

Equation 16 expresses the Q for a cavity whose damping depends only on the
finite conductivity of its walls. A bar over a quantity will refer to

this latter cavity. & is the skin depth and is given by

R N
Swgedis (17)

Using Equation 9 to approximate § we have

1 ’Rc

Substituting (18) into (16) we find that

=g

Q =~ (.48) —E—E . (19)

If we define an effective ''sheet resistance' by

R =

" (20)

E

then

10
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Q= .48 (R c) (21)

Increasing the conductivity or decreasing the sheet resistance has the
opposite effect for the two types of damping. The difference between
Equations 15 and 21 arises because Equation 20 is really a second order
effect. That is, the E fields parallel to the cavity wall are assumed to
be zero in first order. Damping at the walls appears because the E fields
at walls are not quite parallel to the walls. Equation 15 is the result of
a first order calculation; that is the E field parallel to the damper is

non-zero in first order.

1




SECTION 3
THEORY

3.1 ONE AND TWO SHEET DAMPERS IN THE FORM
OF A CYLINDER WITH OPEN ENDS

In this section we derive the mathematical relationship which
relates the position of the damper sheets and their conductivity to the com-
plex frequencies of the cavity. The frequencies are complex because the
damper sheets have introduced modal damping. This damping appears in the
ma*hematics as an imaginary part of the new modal frequency. We begin by
assuming that we have a cavity in which axisymmetric modes have been es-
tablished. The cavity, except for the membranes, is empty. The membranes
will be assumed to be open ended cylinders; only two membranes will be

considered.

Figure 1 depicts the physical situation. The membranes are treated
as boundaries between regions I, II and III. In these three, source free

regions,Maxwell's equations are

2 2
a(la ) 8 1 %8
= |= == 1B} + - = =0, (22)
o \r Jr 822 C2 8t2
9E
aB
%atrz'ﬁ’ (23)
and
aE
z .2
TR rE M, (20)
12
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e ——————————————— e

where a subscript z or r refers to the z or r cylindrical coordinates
respectively, E and B refer to electric and magnetic respectively. Assuming
e and defining k2 = (m/c)2 -

(pTr/L)2 we can solve for the fields in the three regions in terms of a series

that the time dependence can be represented by e!

of Bessel functions and the trigonometric functions sin(pmz/L) and cos(pmz/L);
where P is an integer and L is the height of the cavity. Since this analysis is
not really dependent upon the trigonometric functions we suppress them in the

equations to follow.

We are really interested in computing the frequencies of oscilla-
tion of the system depicted in Figure 1. To do so we must match the
solutions in the various regions across the membranes and then finally require

EZ to be equal to zero at the tank wall. In region I the solution is

B, ant)l(kr) 3 (25)

and from Equations 24 and 25

ck :
EIz = —.J—w— 1J0(kr) 2 (26)

The symbol . in Equations 4 and 5 represents a constant to be determined;
the subscript I represents region I. Jq are Bessel functions of order q.

In region II the fields are

Bip = eJ, (kr) + bN, (kr) , (27)

and

Ejp, = - i(eJy(kr) + bNy(kr))ck/w , (28)

where e and b are constants to be determined and Nq is a Neuman function of

order q. In region III the fields are

Bypp = Jy(kr) + £N (kr) , (29)
and
Eppp, = - iWg(kr) + £N,(kr))ck/w . (30)
1




IT1

I1

e, —— e e A e

Membrane 1

I Membrane 2

I11

Figure 1. Cross section of a cylinder with membranes.
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To find the four constants.«, b, e, and f we apply the boundary conditions

across membranes 1 and 2. The boundary conditions are:

BII - BI = 4WEZ/C Rel y E=S Rl i (31)

Eiq s "B o MET AR, (32)
for membrane 1 and

BIII - BII = 4WEZ/C ReZ s T = R1 4 (33)

EIII 0 EII g at r = R2 : (34)

for membrane 2, where Req is the sheet resistance of membrane q. Inserting

Equations 25 through 30 into Equations 31 through 33 we end up with the four

equations
fa , + ea;, + baj;=h , (35)
fa, +ea,, + ba,z =h, , (36)
eaz, + ba33 + aag, = 0 ; (37)
ea,, + ba,; + aa,, = 0, (38)
where

e G Nl(xaz),a12 = Jl(xaz) - zZJO(xaz)

0
n

13 Nl(xaz) - zzno(xaz),h1 = Jl(xaz) \

0
n

21 = - No(xaj),a5, = Jg(xay)

4]
n

23 = Ng(xay),hy = Jg(xa,) > 3}

)
n

32 = J1(xa,),a55 = N, (xa,)

0
n

34 * 2Jg(xy) - J;(xay)

[
n

42 = = Jo(x%y),8,3 = - Ny(xay)

a4 = Jo(xay)

15
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and where we have used the definition:

kR = x , (40)
o =R /R, (a1)
oy = Ry/R (42)

and

i cRel w
_ .[ 4nm ck
2.2 = l(CR )—u—)— . (44)
e2

To find k (or x) we must solve for f in the system of Equations 14 through 17 and

set EIII : at r = R equal to zero. That is we must solve the region III equation

Jo(x) + fno(x) = 0, (45)
where we use the relation

-1/2

2
gk pr R
= (l + ( . L) ) 3 (46)
in 2 and z, when we solve for f. If only membrane 2 were present then f
would be
: -
2,(J(xa,))
% e -0 -2 (47)
No(xaz)(Jl(xaz) - zZJO(xaz)) - Nl(xaz)Jo(xaz))
Recognizing that
I NG = JoIN () = 2/my (48)
Equation 47 becomes
2
Za (Jn (X))
f = 3 2 ‘ (49)
maw, - taNo(Rz)lo(%ag)
16
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Substituting Equation 49 into Equation 45 we find that the equation that

must be solved to obtain the complex frequencies, for one membrane, is

00 + g—xazzzJO(xaz)(No(x)Jo(xaz) - No(xa)J (x) = 0 (50)
3.2 AN APPROXIMATION FOR ONE AND TWO SHEET DAMPERS

An approximate solution to Equation 50 can be made by assuming that
roots xnp with the damper (z2 finite in Equation 50) are not much different

than the roots without the damper X, That is we assume that

0
xnp - an 5 (51)

where an is the small change from the zero order root. Under this first
order assumption the an for more than one damper would simply be the sum
of the dnp for each damper alone. Substituting Equation 51 into Equation

50 and using Equation 46 we find that

£ g0
- Jlénp + 16np|zo|S + 1gxn]zol =0, (52)
where
g(x) = TT/ZOIJO(XG) (NO(X)JO(XG) = NO(XC!)JO(X)) s (53)
. 2K’ 0 9g
S g(xn)(l * Anp) R, axo , (54)
n
K%L 3»k )'1 (55)
np np np .
TR 2
L= (E2) , (56)
np x0L
ck
4 0
|25l = (=) — (57)
0 (cRe wo

17




y Mz (58)

ck
W Ul an

and where we have used the fact that

3,
== - J - (59)

The subscript 2 has also been dropped in Equation 50 since we need only

consider one membrane in the present discussion. Letting

6np np np (60)

in Equation 52 while noting that g(xg) and S are real numbers we find that
0 0 0
1 XplzelaxI (x)

= " (61)
2.0 -
np I + lzy]7s

and

2.0 . 0
R lzol “x 8 (x))
§ = - - (62)
np JZ(XO) 7 IZ |252
1'"'n 0

From Equation 53 with the knowledge that xg is a root of J0 it can easily be

shown that

g(x)) = BIZ (XP0Ny (x]) (63)
and that
S = BY(xg) [Ng (xp) T (x0) (1+A_ ) + x)(- 20N, (x0)J | (xp0)
¢ Ny(@x)J, (x0) - N () ()] (64)
where
B=3a (65)

18
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Note that No(xg) is almost equal to Jl(xg) in Equation 61 so that Sip is

positive definite.

Equations 61 and 62 are the equations which show how the wave
number of the cavity mode changes when a damper shell is introduced into
a cylindrical cavity. In order to investigate the modal damping we will
first need to express the new modal frequency in terms of Gi . We will
then optimize the damping for a particular mode by finding what value of
Re makes the imaginary portion of the angular frequency, wI , a maximum for

np
a given damper position. The frequency wnp’ for the n,p mode of a tank is

") . S, et
( c ) i ;5'+ ( L ) ’ (66)

where we have used Equations 40 and 46. Substituting Equation 51 into 66

we find that

2\-1/2
mI = E—GI 1+ i : (67)
np R 'np xOL
n

We therefore see that maximizing the damping of the n,p mode requires maximiz-

ing éip. Taking the derivative of G;p with respect to Izol in Equation 61

and setting the result equal to zero we find the value of IZOI,IZOIM which
makes s a maximum:
np
Vel w Jatrst (68)
0'M 1

Substituting Equation 70 into 69 we find the value of 6;pl (G;p)M’ which
is maximum for a given position of the damper, namely

(G:p)M . .slg(xg)/slxg ! (69)

Note that (6;) will be zero (when Ez is zero) if the damper position is at
the wall of the cylinder. That is when Jo(axg) = 0. This result is in

direct contrast to Equation 10 which implies that damping should be best at

19




the wall. As noted in Section 2, Equation 10 was derived under an erroneous
assumption for the functional dependence of the field. Equation 69 is one
of the equations we will be discussing in the next section. It, together
with Equation 67, describe how the damping constant for the np mode depends
upon position of the damper. Equation 68 contains the information necessary
to determine the resistance of the damper sheet necessary for optimum damp-
ing. Using Equations 63, 68 and 61 we can put Equation 70 into a directly

usable form

S IA-172
R, = 120n(1 + (Pﬁ—) ) |9,/8] (ohms) . (70)
an

Equation 70 will also be discussed in the next section.

20

—— —— - ——— -




Ny

SECTION 4
RESULTS

In this section we will evaluate the optimum damping resistance
from Equation 70 for a number of n,p modes as a function of damper position.
We will also evaluate 6np with the optimum resistance as a function of
damper position, for a number of modes. The restriction on én will be
that it must be smaller than xg for the damping constant to be meaningful.
How the damping changes as the resistance deviates from the optimum value
is also discussed. Finally a table of values of Q for modes, 5 < n <1
0 <p <10, is constructed for a sheet damper at two positions, a=.8 and
a = .92. These two positions correspond, roughly, to the sheet damper
positions in the Physics International (PI) tank during the MRC March 1977

photon experiments.

Figures 2 through 4 are plots, for three representative values of
p, of optimum resistance vs. damper position divided by the cylinder radius
(a). The labels A to E correspond to n = 1 to 5 respectively. In general
the resistances oscillate (except for n = 1) between zero and some larger
value. Larger values of resistance occur for larger n's but, in general,
decrease for increasing p. (n is associated with the number of nodes in the
r direction and p with the number of nodes in the z direction.) The reduction
of resistance with increasing p is associated with the fact that as p increases
the electric field in the z direction becomes a smaller fraction of the total
electric field so that a larger sheet current is necessary (smaller resistance)
to obtain optimum damping. Figures 5 through 19 are a selection of 6; VS. Q.

In conjunction with Equation 67 they can be used for designing a damper for modes

21
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of a cylindrical cavity. The restriction on their use is that the figures are
0

to be considered valid when dnp < X
xg = 2.405, 5.520, 8.654,
0 .
X, o w/4 .

In Figures 5 through 19 the curves are plotted for a useful o range
.7 =a =1. The curves are truncated for an N'Sg (for example §,¢ in
Figure 16 appears flat at the peak where 625 2 xz).

We now use Figures 2 through 19, and similar curves which are
not presented, to construct a table of Q's for modes 1 <= n <5 0 <p <10
for a two sheet damper. To construct this table we first develop an expres-
sion for the Q for the n,p mode of a cylindrical cavity, an:l Beginning
from Equation 67 the time, tnp’ for the fields to decay to e = of their

initial value is

t = /2,
np cél
np

where an is given by Equation 56. Since the energy goes as the fields

(s (71)

squared the time Tnp (defined as the damping time) for the energy to decay

1 of its initial value is
Tnp = .5 tn

to e

- (72)

Thus from Equations 72 and 71, the expression for the period of the n,p mode

2TR -1/2
T = —— (1 + L > 73
np ch ( np) (73)
n
and the definition
Tn
Q, =0, (74)
| R -
np
we have
31
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0
X
- (1+L) (75)
I np’ °

np

i
an=4_n(5

It is interesting to note that Qno is independent of the dimensions of the

tank; Qno is dependent on the relative positions of the dampers, however.

We construct Table 1 by looking up values of 6np in the figures
adding them for the two damper sheets, at o = .8 and .92, and inserting the
values in Equation 75 where we take R/L = 1/3, roughly the dimensions of the
PI vacuum tank. For example Q0 is constructed in the following way: from
Figure 5 6{0 for a = .8 is .155 and dio for oo = .92 is .047. Adding the total

61

10 is .20. Since L is zero

10

Q10 4 e

Tables 4 and 5 are constructed by looking up the values for Re on Figures

2 through 4 and similar figures not presented in this report. Tables
indicates how valid the approximation xg/dip > 1 is. Table 3 indicates

what the actual damping times are for the n,p modes of the PI tank (R £ 2 m,

L £ 6 m) with optimum resistance dampers placed at o = .8 and a = .92.

We now consider the effect on G;p for deviations away from the
optimum resistance value. Our goal is to determine the effect on an for

a damper that is not optimized with respect to resistance. If Unp

represents the ratio of the non-optimized 6ip to (6; (Equation 69) and

p)M

znp represents the ratio of the non-optimized |z (see Equation 57) to

ol

|z M (Equation 68) then by means of Equations 61, 68 and 69 we can show that

N

Sl 0 (76)

Un 2
P 1+ (znp)

Figure 20 is a plot of Equation 76 and can be used to find an for a damper

of arbitrary resistance. For example if the actual resistance of the damper

32




Table 1. Q(n,p) for two damper sheets at o = .8

and o = .92.

n 0 1 2 3 4 5 6 7 8 9 10
1 L9561 1.09 | 1.49 | 2.15 | 3.08 | 4.28| 5.74| 7.47] 9.46[11.7 4.2
2 11.54 J1.57 §1.67 | 1.83 § 2.06 | 2.35] 2,70} 3.711} 3.59] 4.13} 4.73
3 .485| .511| .588| .715] .891| 1.11| 1.38| 1.70| 2.06| 2.47| 2.93
4 16.68 | 6.73 | 6.89 |7.16 | 7.53 | 8.02| 8.60| 9.30(10.1 |11.0 [12.0
5 §111.8 j11.8 Q2.0 |h2.2 §12.5 13.0 3.5 Ji4.1 114.9 J15.7 [16.6

Table 2. xn/aép for two damper sheets at o = .8
and o = .92.

7?4;17 0 1 2 3 4 5 6 7 8 9 10
1 |12.0 |11.5 | 10.6 | 10.0 9.62| 9.38| 9.22| 9.12} 9.05| 9.00| 8.96
2 1'9.4 119.1 | 18.4 |17.4 |16.4 |15.5 [14.8 |14.1 [13.6 [13.2 |12.9
3 |161.0) 6.33] 6.98| 7.93| 9.07 |10.2 [11.4 |12.4 |13.4 |14.2 |14.9
4 [83.9 |83.9 | 84.0 |84.0 |84.1 |84.1 |84.2 |84.3 |84.3 |84.3 |84.3
5 1148 | 148 148 147 145 145 144 143 142 4 140

33




Table 3. Damp1ng time T, for TM cylindrical tank
modes (in nanosgconds
n 0 1 2 3 4 5 6 7 8 9 10
33.3 |134.8 |39.2 |45.7 |53.6 [|62.3 |71.6181.2191.0} 101 | 111
23.4 123.5 }23.7 |24.2 |24.9 ]25.9 ]27.1128.4}130.0]31.7]}33.5
4.70| 4.91| 5.53| 6.51| 7.76 | 9.24|10.8 |12.5]14.3|16.2]18.1
47.5 |47.6 |48.2 |49.2 |50.5 |52.1 |54.0]|56.1]|58.5]61.1]63.8
66.3 |66.4 |66.7 |67.3 |68.0 |69.0 |70.1]|71.5|73.0]|74.7]76.5
Table 4. Optimum resistance (ohms) for sheet at
o = .8.
p
n\ 0 1 3 4 5 6 7 8 9 10
11 109 |94.6 [70.9 |53.1 |41.5|33.7 |[28.4 |24.4 |21.4 |19.1 |17.1
21116113 J 102 |89.9 |77.1 |65.1 |56.6 |56.6 |42.6 |38.4 |33.9
3117.4]116.1 {19.2 119.3 |21.3|24.6 {24.5 |24.5 |27.2 {26.1 |27.1
4 1105|105 | 104 | 103 | 101 |98.4 |96.1 [93.3 |90.0 |87.2 |83.7
5130.6]33.830.333.2|32.7|28.9|31.330.5]|26.8 |28.8 |25.2
34
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Table 5. Optimum resistance (ohms) for sheet at
a = .92.

p
N012345678910

1 162.9]156.2145.5|35.6|28.8|24.2|20.5(17.8]15.8|14.1]17.1

2 130 | 127 | 120 | 110 | 99.4|90.1|80.7|73.0|66.7|60.6] 33.9

3 165 | 163 | 159 | 153 | 145 | 137 | 128 | 120 | 66.7 | 105 | 27.1

4 160 | 160 | 156 | 154 | 149 | 143 | 138 | 132 | 112 | 119 | 83.7

5 115 f 119 | 1714 } 116 | 113 ) 107 ) 107 | 103 | 124 | 35.4] 25.2

is twice the optimum value then 6$p will be 80 percent of the optimum
s : I ;
i 1 25 percent larger
value. Since an varies inversely as an, an will be P g

than optimum.
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SECTION 5
CONCLUSIONS

In Section 2 of this report we discussed the basic physical con-
cepts underlying resistive sheet dampers by means of an oversimplified
example. In Sections 3 and 4 we obtained the actual equations for two
cylindrical dampers with no end caps. The equations were solved in first
order. Table 1 indicates that many of the modes damp to c‘l of their
initial value in about one modal period. Tables 4 and 5 indicate that,
depending on the particular mode to be damped, the optimum sheet resistance
can vary from 14 to 165 ohms. Although damping isn't a rapidly varying function
of resistance it is still important, in building the damper, to have some

idea what modes need to be damped.

The cylindrical sheet damper, with no end caps, becomes an in-
creasingly poorer damper, as the frequency of the cavity increases (if the
increasing frequency is due to an increasing number of nodes in the z direc-
tion only). As the frequency increases in this manner a smaller percentage
of the electric field energy is associated with the z direction. Since it
is the electric field in the z direction that causes the absorption of
energy by the damper the cylindrical sheet damper with no end caps becomes
a poorer damper. If one were interested in damping these higher frequency

™ modes it would be necessary to add end caps to the damper.
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